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Sectdon I

INTRODUM1OI

In July 1986, a research program was Initiated by S-CUr3ED and its

subcontractor, ENDOCHRONICS, INC., for the purpose of developing an
advanced constitutiv, jidel of ISST soils based upon the concepts of
endochronic plasticity. •") The research was sponsored by the U.S. Army
Engleer, Waterways Experiment Stton (WES) as part of its continuing effort to I
pursue the development and validation of new and improved analytical methods
for predicting explosively-induced ground mrction. In rrder to have a complete
and reproducible set of ISST data appropriate for this purpose, 91,ES performed
a series of laboratory tests on reconstituteJ ISST soil samplise. Some of the
tests in this series were of a special nature, such as shearing at constant I
hydrostatic pressure, to provide the type of data that are most convenient for
fitting the endochronic model.

The model development was conducted in two phases, for reasons that will
become apparent in the sequel. In the first phase, which was initiated in July I
1986, the then existing version of the endochronic model (see Ref. 5, f6r
example) was applied to the ISST data provided by WES. It Was realized at the
time that this endochronic model was only capable of predicting compaction
during shearing at constant hydrostatic pressure. Thus, dijatancy cannot be
described by this model. A cursory review of data from other sandy soils similar I
to the ISST soil conducted prior to the program had indicated that this limitation
of the model would probably not be serious. The issue turned out to be much
more complex than we expected, however, for reasons to be discussed in the

text. I-Prior to applying the model to the WES data, the data were processed on
the basis of the usual recommendations of WES, as dascribed in Ref. 6, that is, 0

volumetric strains for cases of pure hydrostatic compression were defined on
the basis of the "uniform" approximation, while volumetric strains generated
during a process where shear was involved were defined according to the
"cone" approximation. It was found that, when data involving shear are
processed on the basis of the "uniform* approximation, dilatancy is usually 0

observed while, if the "cone" approximation is used to process the data,
compaction will be predicted. Thus, there is the potential for serious
inconsistencies between predictions and data, which were vividly confirmed in
the first phase of this study.

0
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The Inconsistency arises due to the fact that the purely hydrostatic
component of a model is usually fit to dadta which has been processed on the
basis of the uniform approximation. This component is then used as part of the
more general model to predict the volumetric component of response in cases
of non-isotropic loading, involving shear. In such cases, the predicted
volumetric response will be the result of a model based on the uniform
approximation, while the data, processed In the recommended fashion, would

be based on the "cone" approximation. Because of this, the model will most
likely predict dilatancy while the data will probably show compaction. The I
results obtained from the first phase of this study in which the endochronic
model was fit to the ISST data in the recommended manner dramatically
confirmed these inconsistencies.

Unfortunately, there appears to be no precise way of accurately defining I
the volumetric strain, needed for constitutive model development, from the usual
triaxial data. The difficulty arises from the fact that the strain fields in triaxial tests
are typically inhomogeneous. In view of this, and given that the usual data from
the triaxial test gives the nominal engineering axial strain c over the specimen
length and the nominal engineering radial strain e at te midpoint of the
specimen, it appears that, while admittedly nor rigorous, the simple expression

6 = 2a "'2 (1)

appears to provide the best definition of the nominal engineering volumetric
strain that is possible within the limitations of the data provided. Several
techniques for more accurately measuring strain in triaxial tests have recently
been proposed (see Refs. 7 and 8, for example). Until such techniques have
been implemented, however, Eq. (1) appears to be the preferred way of defining
volumetric strain from triaxial data.

In view of the difficulties encountered in the first phase of the study due to
the use of the uniform and cone approximations, it was mutually agreed by WES
and S-CUBED that a second phase should be undertaken, using data that are
processed only on the basis of Eq. (1), which to first order is the uniform
approximatior This eliminates the inconsistencies that can arise from the joint

2
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use of the "cone' and *uniform3 approximations. However, another problem
develops, since the use of Eq. (1) In conjunction with the ISST data will lead to C
dilatancy, which is not within the scope of the endochronic model used in the

first phase. Therefore, an endochronlc model with the capability to describe
dilatancy~ms.peded. Fortunately, such a model had very recently become
available,"',' but had not been vWaiaod or applied to real materials.

The second phase of this study, which began in April 1987, was
undertaken for the yose of exploring the application of the new diletant
endochronic model to the ISST soil dafe, using Eq. (1) to define volumetric
strain from the data. The present report has been prepared mainly to
summarize this work In Section 2, the new dilatant endochronic model is
described and the special case of shear at constant pressure is considered. The
application of the model to the ISST data Is described in Section 3. A numerical
scheme and coresponding computer program for computatinnally dealing with
the model are described in Section 4. Also, in this section, the case of shear at
constant pressure is considered numerically. Section 5 discusses some
difficulties that were encountered in the numerical study, and suggests possible
ways to solve them. Finally, the conclusions drawn from this study, as well as
recommendations for further study, are given in Section 6.

31
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Setlon 2

AN ENDOCHRONIC SOIL MODEL WITH DILATANCY

2.1 BASIC CONSIDERATIONS.

The application of sndochronic plasticity to soils has, so far, been limited
either to one-dimensional histories (shear and hydrostatic response) under
cyclic and other loading-unloading conditions or to two-dimensional histories
(shear-volume Interaction) under densitying conditions. The question of dilatant
behavior has hitherto remained unresolved, In the sense that, until now, the
constitutive relation in question [11] gave rise to densification in the presence of
shearing under constant hydrostatic stress.

What is needed is a constitutive equation which under conditions of low
density and/or high pressure will give rise to shear-induced densification but
under conditions of high density and/or low pressure will give rise to shear-
induced dilatancy. In this section we present a thermodynamic approach which
leads to such characteristics of soil behavior. The full analysis is given in detail
in Ref. 10.

The reasoning that led to the present treatment is broadly as follows. The 0
coupling between deviatoric and hydrostatic behavior, that ultimate!y leads to
dilatant deformation, must come from three possible sources:

(i) The intrinsk.i time through the shear-volurnetric coupling
parameter k;

(ii) The expresiion for the free energy;
(iii) The rate equations for the internal vuriables.

Source (i) alone, will 'always give rise to densification, as the application of the
relevant equations actually showed. Source (ii) is not physically viable because
given a soil with a e.ertain porosity the onset of dilatancy under monotonic
shearing is governud by the prevailing hydrostatic stress. If (ii) is to be the
suurce, then a chrange in the form of the free energy must take place upon
varying the hydros;atic stress, a phenomenon which does not appear physically
plausible. One wruld expect the form of the free energy to remain invariant with
a change in the hydrostatic stress. The remaining plausible cause is source (iii)
and this is the or ie that we developed in Ref. 10 and summarize in the present
work.

4
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2.2 FORMULATION OF MODEL

In Ref. 10 w- took the position that whereas the deviatoric plastic work is a
cause of hydrostatic plastic strain, it is external to the hydrostatic process in the
sense that it is not a hydrostatic mechanism. Therefore, it qualifies as a
thermodynamic internal force of the first kind in the sense of Ref. 1 2. In the

presence of such forces the thermodynamic equations appropriate to the rigid
plastic solid that represents the plastic behavior nf the soil are the following, in
the usual notation, in terms the deviatoric and hydrostatic free energies 01) and
AH respectively. For a more detailed thermodynamic treatment see Ref. 13.

= A,, IHI -9r11i (2) 1
I

OH 17'Br IeP - qrl 2  (3) 1
8 01 a (4a,b)

51D r r (5)

'011H dq r
q + a z2 =- Rr (6)

%#here

Rr= r (7)

5(a1

51
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Thus Rr is a thermodynamic force of the first kind, i.e., one which is
internally lied but which is external to the (internal) mechanism on which it
operates. The role of the coefficient r is to determine the degree to which
the plastic work affects the r'th hydrostatic mechanism.

The intrinsic time dz is given by the customary relation

jdzpj= I2II+ kAdePl2 I8
The resistance coefficients andan are not constant but are related to the
hardening functions F and H respectively by the equations

arl = FDaro r a2 (9a,b)

~ ~ 11  ,aý22 =a22FH

,te re

FD = FD(a,z) , FH = FH(eP) (10a,b)

The dependence of FD on z is weak so that for deformations other than cyclic,
for which the variation in z is sriall, the latter plays a minor role in F and may
be ignored. The question as to whether the dilatancy coefficients ar are• ' •21
constant during the deformation, or whether they change with hardening, is an
open one at the moment. In this work they have been taken as constant and this
choice seems to be consistent with experiment.

A straightforward analysis using Eqs. (2) to (7) in light of the initial
conditions

gr = , qr(O) = 0 (11a,b)

gives rise to the fol!owing set of two constitutive equations that govern,
respectively, the deviatoric and hydrostatic behavior of soils:

61
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S= - z*]a'• dz" (12)

10

ZH pZH IQJ 0 # (zHH-z) dzd + --(z '] Vz) azdz" , (13)

where the kernels p, I and r are all weakly singular but integrable in any finite
domain [O,z] and:

rz •"=rdz (14ab)

a'Zlr e przH (15) Irr IS
r 57IP r ie PrzH (17)

r

Ar Br
ar = r'• ' r =(18a,b)

Some simplifications occur when the effect of the deviatoric plastic work rate is
distributed uniformly among the hydrostatic mechanisms, in which case

7
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arO o (for allI r) (19) •

21 - u21

In this event, and in view of Equations (16) and (17)

r (zq =a 0(~- (20)1

so that once O(zH) is known, from a simple monotonic hydrostatic test, then

r(zH) is also determined within a multiplicative constant.

In addition there exist the elastic relations

dge = d1/ ; dee =d/K (21)

where # is the elastic shear modulus, and K the elastic bulk modulus neither of
which need be constant in the course of deformation. The total strain is given by
the relations:

ql=coe+ ; de =dEe+dep (22)

The general method for determining the form of the functions p, 0 and r, the
functions FH and FD, the elastic moduli G and K as well as the parameter k,
from appropriate experiments, is a subject that will be dis',ussed later on in this
section. The specific determination of these functions and parameters for the
WES ISST soil is addressed in Section 3.

2.3 GENERAL APPROACH FOR DETERMINING MATERIAL FUNCTIONS
AND PARAMETERS.

In this section, the general approach for determining the material functions
and parameters of the endochronic model described in the preceding section is
given. The functions and parameters that need to be determined for a particular
material are: K, G, k, p(zD), 0(ZH), FH and FD.

8
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The bulk modulus K, hydrostatic kernel N(ZH) and the hardening function I
FH can be determined from a pure jydrostatic test, which should have at least
two unloadings and reloadings and extend well into the concave part of the
virgin hydrostatic stress-strain curve. The data should consist of continuousI
measurements of a and E.

The shear modulus G, coupling parameter k, dilatancy parameter rn,
hardening function FD and the shear kernel P(zD) are most efficiently determined
from triaxial tests in which specimens are sheared under fixed hydrostatic (not
confining) pressure. The fixed hydrostatic pressures selected for these tests
should adequately cover the hydrostatic range of interest; they should be
reached monotonically and lie on the concave part of the virgin hydrostatic
curve. The shearing should be taken out to where the shear stress has
essentially reached a limiting value. The data should consist of continuous
measurement of a, e, I and •.

Specific details of the approach for determining the material functions and
parameters from the types of data discussed above are given below.

2.3.1 The Bulk Modulus K.

The bulk modulus K at the onset of hydrostatic deformation is determined
by the slope of the hydrostatic stress-strain curve at the origin. We denote this
value of K by K0 . However, in the case of ISST soils it was found that K does not
remain constant but varies with compaction. Simultaneously it becomes
dependent on the elastic hydrostatic strain. This complex behavior is inferred by
making the following observations:

(a) Upon loading to some value of a and unloading to zero stress and
reloading one finds that'K (i.e., the slope of the hydrostatic stress-strain curve at
the onset of reloading) is not equal to Ko

(b) The reloading stress-strain curve almost retraces the unloading
curve with the implication that unloading is virtually elastic, and because it is
non-linear, obviously dependent on the elastic strain. This also implies that

9
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plastic unloading in the stress-plastic strain space is almost vertical with the
inference that #(zH) is close to a delta function. In mathematical terms K admits
the representation:

K = K(ee,,p) (23)

In ISST soils Eq. (23) is closely approximated by the multiplicative form
given in Eq. (24), i.e.,

K = Ko(GP)K1s e) (24)

where, without loss of generality, we may set K1 (0) = 1.

Now let P be a point on the hydrostatic strain axis, reached upon unloading from
a value of o. Then, K is determined from the initial slope of the reloading hydrostatic
stress-strain curve at P (where e = 0) and K1 from the shape of the unloading part of
the hydrostatic curve, terminating at P.

2.3.2 The Hardening Function FH.

At this point certain observations are in order. The hydrostatic response under
purely hydrostatic conditions is given by Eq. (25), obtained by setting § equal to zero in
Eq. (13). Thus

V= J(zH - z.) d dz" (25)

Thermodynamic considerations support the position that • is integrable,
bounded and convex for all finite zH. Thus

(z*)dz" < , (for all finite zH) (26)

10
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ff F were constant and equal to unity, say, then in view of Eqs. (25) and (26), z.
would be equal to eP and Eq. (25) would give a as a convex function of eP'-
However in actual experiments a becomes asymptotically a very rapidly
increasing concave function of cP as SP increases. In particular this function is
invariably of an exponential type, so that

a= Mo exp(p•eP) (27)

for large values of eP. Equation (27) is a basic hypothesis of the critical state
theory. If O(zH) were a delta function in the sense of Eq. (28), then,

*(z~.) ~o6~-t)(28) '
Thus in view of Eqs. (25), (8) and (14b):

= dep (29)

a o FH

Comparison of Eqs. (27) and (29) yields the important result,

FH = exp(peP) (30)

Consider now the other simple case where the hydrostatic response is given in

terms of one internal variable. In this event the resulting constitutive response is

given by the following equation:

pu + (do/dZ. = p*o0desP/dd , (31)

which under monotonic loading conditions becomes the nonlinear differential
equation:
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p*o + (da/deP) FH F , (32)

where P* and a0 are material constants.

We now ask the question as to what should the form of the hardening
function be if the hydrostatic response is to be given, albeit asymptotically by
Eq. (27). A simple substitution for or (as given by Eq. (27)) in Eq. (31) gives rise
to the following result:

FH -- expP)/p /{- a exp(peP)) (33) 1
where a I P. Now FH is more complicated but still looks a great deal like an
exponential function for small values of "a". It is of interest to note that in view of
Eq. (32) it follows that as p* #z, f(ZH) tends to a delta function, a is given by
Eq. (29) and FH by Eq. (30), which isthe limit of Eq. (33) as a 0.

2.3.3 The Kernel Function 01Z1)"

The function O(zH) can be determined uniquely from Eq. (25) if the form of
the hardening function F is known a priori. To that end we note that there is
sufficient experimental evidence to support the position the FH is of exponential

character and is given by Eq. (30). Under conditions of monotonic loading
Eq. (25) then becomes:

aMi = 0#J (zH - z*)FH(z*)dz* (34)

0

where

O(qZ. = a{eP(zH)} ; FH(Zl. = FH~eP(z.) (35a,b)

121 I
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In the case where Eq. (30) applies a simple calculation shows that

FH-/(l - ) (38)

Since now both a and FH are known, Eq. (34), which Ic a Volterra integral
equation, may be solved numerically to give the unknown function I(ZH).

In the actual case of ISST soil, the steepness of the unloading hydrostatic
stress-strain curve indicated that O(zH) is indeed close to a delta function. In this
event the numerical values of # are so dominant near zH -f z" that, by virtue of
the mean value theorem, one can represent the integral on the right-hand side of
Eq. (34) by the expression:

ZrI

FH zHz)dz"FJ.(z.)dz' (37)

0 40

Thus, in view of Eqs. (35) and (36):

#zq= (d/dzW for(za (I - pzW.) (38)

2.3.4 The Material Constants k and ro.

We begin with the hydrostatic constitutive equation, previously Eq. (13), I
which in the case of the cylindrical triaxial test becomes:

ZH ZH
zd " (39)

au=J (z zaFdz'+Jrz , e
0 0N

131
- - - - - - - -
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~here s - r'(e 2 -o1) and ep -= fkl(sp.- ep), with x1 being the axial

d~vction.

The shear modulus G is presumed known. Its determination will be
discussed later in the section. Thus ep may be calculated from e via Eqs. (21)
and (22).

Previously # and r were represented by detta functions in the specific case
where initial hydrostatic stress lay on the concave part of the hydrostat. Here we
consider the more general case where # and r are represented by an
exponential function. Thus we set

S= ,P*z, r = p*Fe PzH (40)

Note that, in the limit as ps.,, the rignt-hand sides of Eqs. (40a,b) become delta
functions, thereby recovering the previous case.

Using !.aplace transforms one may now solve Eq. (39) in the light of
Eqs. (41) and obtain the following expression for ep:

J7Az " o (41)

Now let a , where a is the constant hydrostatic stress at which C
shearing occurs, .,(let deP belhe in'-rmnent in volumetric strain due to shear,
at constant hydrostatvc stress. Then differentiating Eq. (41) we obtain the
following relation for deg: I

Ip
deg r (42)
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Note that the same equations would have been obtained had we
represented # and r by 6-functions. Hgwever, now there is an important
difference in that a Is no longer equal to e'eP where cP is the volumetric strain
at the end of the (&nl) hydrostaft phe. Inct, in ti present cae:

(-)"d(43)

"0

or

Pa + 00- , (44)

The effect is illustrated in Figure 1. Note that at low stresses the form

* - #o6(zH) seriously overestimates the initial hydrostatic stress.

Let us now recall Eqs. (8) and (42) with the constraint a =, co i.e.,

codz = .oePekdep + rol* del' (46)

except that now vo , ete but is given by Eq. (43). Specifically in the case of the
triaxial test:

dz2 = (dep)2 + k2CdeP)2 (47)

OdZ= 0 ePePkdeP + ros deP (48)

15
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Figure 1. Mean stress a versus plastic volumetric strain eP.
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Equations (47) and (48) can be solved simultaneously to give:

k 011 p-, L= n ] (49)
deP 2Op 9pP 0

The constant r is aetermined at the point A where the slope of the curve I
of the shear-inducec'hydrostatic strain versus plastic shear strain is zero. (See
Fig. 2). Then it follows from Eq. (49) that

go= s (5o)

where s is the value of s at point A in Fig. 2. Since the right-hand side of

Eq. (49) is now known, de'/dew may be found for various values of k. The onewhich provides the best agreement wit the experimental data is chosen.

Approximate Solution of Equation (49).

The hydrostatic response can be determined explicitly by means of an
approximate solution of Eq. (43). In effect, since p* exp(-P*zH) is close to a delta
function, Eq. (43) becomes:

a eP #0(i - e"z") (51)

Thus

17i
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Figure 2. Shear-induced hydrostatic strain versus ep.
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go-= e80 ,0 [0-1'e Z9 (52)

Equation (52) may now be used in Eq. (50) to give the following explicit result

deg w o

k -T D-- (53)

where

D• ee[[ + e) + 1
;; D= ~~1 -e•pz~ '*H +•0r -1 (4

and

z j e P] (55)

Solution of Eq. (49) for Asymptotically Small a,.

Of interest is the case of asymptotically small a and ep in which event

and
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.~ z,,p (57)

Thus Eq. (54) becomes

r4) Peg[ 2pe8 11/21
°- p + 2, + [, ro (58)

it follows, therefore, that at small values of a , D is magnified and thus the value

of de/deP is depressed and the onset of diatancy is accelerated in accordance
with observation.

2.3.5 The Shear Modulus G.

The singularity of the shear kernel ensures that the behavior is always

elastic at loading, unloading and reloading points, on the shear stress-strain

curve. Thus the initial shear modulus is determined by the slope of the tangent
at the origin of the shear stress-strain curve. Measurement of this slope at other
loading and unloading points will determine if G is constant. If not, then G will
most likely depend on the second invariant of the elastic deviatoric shear strain

tensor, i.e.,

G -= G( ell,°I (59)

as was found to be the case in plain concrete (see Ref. 5). The form of the

relationship will be found by measuring G at such points. In the present study G

is considered constant and was determined from the initial slope of the shear

stress-strain curve.

2.3.6The Deviatoric Memory Kernel D.(ZD).

The kernel p is determined from the deviatoric response equation (12), i.e.,
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Zi
S o z deP

at as= J - z) (60)

at ahydrostatic stress value a at which the deviatoric hardening function FD is
normalized and equal to unity, i.e.,

FD(uo) = 1 (61)

The determination of F0 for other values of a will be discussed shortly. Thus in
the course of the shearing test conducted at a = co, we have

dzD = dz (62)

Now let zo be the value of z at the conclusion of the hydrostatic test. Then in
view of Eq. (62)

zo = z - zo (63)

Also let the right-hand side of Eq. (49) be denoted by a function 7(eP). This
function is known from experimental measurement. Thus

k -- p = 7/ (64)
dep

Combining Eqs. (62) and (47) one finds the relation

(65)
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Integration of Eq. (65) yields the relation

•p = eP(zD) (66)

Let

dep •ftf(7a -d~ g(z (67) _

where g is a known function of zD. Also

s(eP) = s [eP() s = zd (68)

In view of Eq. (60)

S(ZD) = (zD- z')g(z')dz' (69)

Equation (69) is a Volterra integral equation of the first kind which can be solved
for p(zD) since both s and g are known. The method of solution is given in
Ref. 3.

2.3.7 Determination of the Hardening Function FD'

"The analysis behind the procedure v.,as discussed at length in Ref. 5. Let
s6 be the value of s in the limit of large ep, in the course of a shear test at
constant hydrostatic stress eo. Then it was shown in Ref. 5 that

FD(°OO (70)
0

As a result, the dependence of FD on or can be determined from data on
shear tests conducted at several values of fixed hydrostatic pressure co which
span the hydrostatic range of interest.
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Section 3

APPUCATION TO ISST SOIL DATA

In this section, the endochronic model described in Section 2.2 is applied
to ISST soil, using the laboratory data for reconstitutied ISST soil generated by
WES sdecifically for this study [4]. Before the model waj fitted, the WES data
were transformed from engineering strain to natural strain so that the resulting
model would be appropriate for use in conjunction with existing wave
propagation codes, which typically are formulated in terms of natural strain. In
addition, the volumetric strain was determined from the data in a consistent
manner, using Eq. (1) given earlier. The material functions and parameters of

the model were determined from the WES ISST data according to the methods
described in Section 2.3. Specific details of the manner in which this was
accomplished, as well as the results, are given below.

3.1 DETERMINATION OF HYDROSTATIC FUNCTIONS AND
PARAMETERS.

The measured behavior of ISST soil to pure hydrostatic loading is shown in
Figure 3, where the results from three separate tests have been plotted. As this
figure reveals, the unloading-reloading paths practically coincide, indicating that
the behavior along these paths is essentially elastic. In view of this, the
dependence of the bulK modulus K on elastic volumetric strain ce (see Eq. (24))
was obtained from the unloading curve emanating from 57 MPa. The expression

K= K. + K1 Ge)m (71)

where

KO= 501VPa, K1 = 1.426 x 1010 1Pa, m= 5.2 (72)

was found to describe the data very well.

* See Appendix A for details.
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Figure 3. Isotropic compression of ISST soils, showing comparison
between endochronic model and data.
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The hydrostatic hardening function FH(eP) was determined as follows.
First, a plot of pressure, e, versus plastic volumetric strain, e', was constructed
from the data shown in Figure 3, using the exprecsion for the bulk modulus
given in Eq. (71) to define the elastic volumetric strain. Since the unloading-
reloading curves practically coincide, the kernel function #(z ) must be very
close to a delta-function and, for the present purposes, was in'act assumed to
be one. When this is the case, the virgin hydrostat is given by the expression
(see Eq. (29)):

= 0 F (73)

This was fit to the a versus eP data, using Eq. (30), with the result

FHt=eCp (74)

where

p = 19.5 (75)

Turning now to the hydrostatic kernel function #(ZH), we adopted the form
given by Eq. (16), i.e.,

N -PrZH

and set N = 2. To determine the Br and Pr' we proceeded as follows. First, let
us set:

5(77)
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A plot was made, in terms of V(ZH) versus zH, of the second reloading path
shown in Figure 3. This plot shows that q approaches an asymptotic value, call

It Ve, as zH * a. A further plot was made of 1. - q(z ) versus zH, and the
resulting curve was fit, via Prony's method (see Ref. 1A, for example), by an
expression of the form:

2 Cr-PrzH

N7 C -re (78)I

Differentiating this with respect to zH, and recalling Eq. (38), it follows that

2 -/PrzH-•-

-(Zl = , are (79)

%here

Cr = P r Cr (80)

T a since Pr and C are known from the Prony fit in Eq. (78), the Br are also
knc. as a result of Eq. (80). In this manner, the following values of Br and Pr
were -atermined:

B1  1,680 MPa p1 = 2,595. (81)I

C- =11,610 MPa P2 = 13,680.

This completes the specification of the hydrostatic functions and
parameters for ISST soil. A comparison between the model predictions based
upon these functions and parameters and the corresponding WES soil data [4]
is shown in Figure 3. As an inspection of this figure reveals, the model does a

remarkably good job of capturing all of the details of the data. 3
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3.2 DETERMINATION OF SHEAR-VOLUMETRIC COUPLING
PARAMETERS It AND rO.

For the determination of k and ro, we will use Eq. (49) and the data given
In Ref. 4 for the cases of shear at various fixed hydrostatic pressures. Attention
is sp~cifically focussed on the three cases for which the fixed hydrostatic
pressure lies on the concave portion- of the virgin hydrostat, i.e., those with fixed
pressure of 3.45, 6.90 and 10.34 MP&

The importance of Eq. (40) lies in the fact that by fitting it to the appropriate
shear-volumetric coupling data obtained from shear tests at constant hydrostatic
pressure, the values of the parameters k and F0, can be found directly. Thus,
the shear-volumetric coupling parameters do not need to be determined
iteratively. It will be recalled that the parameter p was obtained independently
from the pure hydrostatic compression data (see Eq. (75W) for ISST soils and has
the value 19.5.

It should be noted that Eq. (49) was derived on the assumption that the
shear strain increases monotonically. However, the shear tests at constant
pressure reported in Ref. 4 were, for other reasons, not performed under
monotonic shearing conditions. In each test, the shearing was interrupted at a
shear strain of 3 percent by an unloading-reloading process, and then the
shearing was continued out to a shear strain of about 11 percent, after which
unloading took place. The experimental data for these tests are shown in
Figures 4 to 6, where the volumetric strain due to shear has been plotted
against the plastic octahedral s.hear strain. These figures reveal that the soil first
undergoes compaction up to a peak, followed by dilatancy with further increases
in the shear strain.

In applying Eq. (49) to the data depicted in Figures 4 to 6, we attempted to
compensate for the effects of the unloading-reloading process at 3 percent
shear strain. A numerical program was developed to integrate Eq. (49), and
using this, the following values of k and ro were found to provide the best
correlation of the data from the three tests:

k 0.6
(82)

ro 1.25 MPa.
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Figures 4 to 8 show comparisons between the data and Eq. (49) with the above
values of the parameters. An inspection of these figures reveals that the model
caipturs the essential features of the data quite well, in view of the fact that the
data were not obtained under truly monotonic shearing conditions. These
figures demonstrate the ability of the model to describe both comoection and
d~imm in accordance with experimnal observation,

3.3 DTURMINATION OF DEVIATORIC FUNCTIONS AND PARAMETERS&

Figure 7 summarizes the measured dependencies of the octahedral shear
streSs on the octahedral shear strain from the nine shear tests reported in Ref. 4
that were performed at constant hydrostatic pressures. In view of the
remarkable consistency and reproducibility of these data, the care with which
those experiments were done is clearly evident.

The deviatoric functions G, p(zD) and F were determined from one of the
tests depicted in Figure 7, namely, test RDC V24 in which the fixed hyhdrostatic
pressure was 6.9o MPa. The volumetric strain caused by the shearing was taken
to be irreversible (fully plastic) and, in the developments which follow, will be
denoted by eg. From the data for test ROC 624, numerical tables of the relation's

T W T(7 0) (83)

g -eg(ep) (84)

were constructed, where

7 = 7 -~(85)

Here, r and 7 denote, respectively, the octahedral shear stress and the
octahedral shear strain. Furthermore, 7P is the plastic component of 7, while G
is the shear modulus.
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The shear modulus, and its dependence on 7, was found as follows. The
response of the soil at the initiation of shear loading, as well as at the two points
of unloading shown in Figure 7, is assumed to be purely elastic. On this basis,
the slopes of the r- versus 7 curve at these points defines the corresponding
values of 2G. In this manner, the following dependence of 2G on 7 was found to
provide a reasonable description of the data:

2G = 2 + C0J7 (86) I
Wie re

(87)
co =3000 W° a

To determine the kernel function p(ZD), we begin by rewriting Eq. (69) in
the form

'r(w) 8(w - wA)•. dI" (88)

0I
where r- and 7P are, respectively, the octahedral shear stress and plastic

octahedral shear strain,

w -- zD , (89)

and z° denotes the value of zD at the end of the pure hydrostatic compression
phase of the test. In Eq. (88), r(w) and d'P/dw(w) are presumed known while
p(w) is to be determined. To determine r(w) and d 7 P/dw(w), the relation
between 7P and w during shearing must be known. This relation was found by
numerically integrating Eq. (49), which can be rewritten in the form:
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I~d-/I

2peg (L O 2
e _ 'r, 21 dy1p

Jd = (90)

(10 + Lpeg8e2peg +3 [ro] .12 ]

Inasmuch as both 'r and e• are known as functions of 7 P from Eqs. (83d and
(84), the righthand side of Ekq. (90) can be expressed solely in terms of 7 , i.e.,
Eq. (90) can be written in the form:

clW = 0 7 P)d7 p (91)

and numerically integrated to give the relation

w = w(7P) (92)

In this manner, the relation between w and 7P, shown in Figure 8, was obtained.
The relation (92) was numerically inverted to give

7 P = 'yP(w) (93)

Therefore, by using Eq. (93), the relations (83) and (84) were expressed in the
form:

r = 'r(w)

((94

Using these relations in conjunction with Eq. (88), the resulting Volterra integral
equation was solved numerically for p(w), using a technique described in Ref. 3.
The result was then fit by Prony's method [14] to yield the following expression
for the shear kernel function:
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P(zD)= 3 Are'arzD (95)P~zI• ""r=""

Ykiere

A = 11.6 Wa 819.0

A2 = 160 Wa t2 = 28.9 (96) 4

A3 = 706 lPa 3= 1,381.

To provide a check on the internal consistency of the above operations, we
performed the following analysis. The expression given by Eq. (95) for p(zD),
together with the derivative d7y'/dw obtained from the relation between 7P anow I
depicted in Figure 8, were used in conjunction with Eq. (88) to predict 'r(w).
Figure 9 shows a comparison between the predicted r(w) and the coresponding
'r(w) from the data for test RDC 624. As the figure reveals, the agreement is
quite good and thus validates the accuracy of the above technique.

To detormine the shear hardening function, FD, we first recall that in the
preceding devlopments we set FD = 1 at the reference pressure of
OR = 6.90 MPa. In view of this, we can write Eq. (70) as

.D(Oo) % (apo (o) (97)

since s. and r,, differ only by a multiplicative constant. The dependence of r-,I

on v0, for the ISST soil, is given by the data in Figure 10 and is found to have the
following linear form:

°° I
.('o) M +r, s (98)
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where

rs - 0.15 Wa

(99)
Ps = 0.56

For the reference pressure of 6.9 MPa, we find from Figure 7 that

re v -= 4.0 MWa (100)

Thus, from Eqs. (97) to (100), it follows that

FD = Oo + (101)

vMe re

#0 = 0.0375
(102)

01 = 0.140 Wa"
1

The specification of the model parameters for the ISST soil is now
complete.
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Section 4

NUMERICAL CONSIDERATIONS

A numerical scheme is presented In this section for integrating the system
of equations which govern the new endochronic model with ;filatancy described
in Section 2.2. The scheme is explicit, first order accurate and based upon
Euler's method. Accordingly, care must be taken in applying the method to
ensure that the prescribed Increments are sufficiently small so that the computed
results are essentially Independent of the increment size. Otherwise, the scheme
is straightforward, efficient and easy to implement.

Two different versions of the scheme are described below, namely, one
which requires the prescribed strain history as input and one which requires the
prescribed stress history as input. In both cases, the equations are restricted to
principal directions of stress and strain. Another version that specifically applies
to the stanoard triaxial compression configuration has been developed under
separate contract [16]. A listing of a computer program for the version of the
scheme that requires the prescribed strain history as input is given in
Appendix B.

4.1 BASIC EQUATIONS.

The basic equations which govern the new endochronic soil model with
dilatancy were giver' earlier in Section 2.2 but are summarized below forconvenience;

P= J zD - z ]z- dz" (103)

.0

deH JIP zH -z .. dz
N '- z31 dz' + N z') az-- dz" (104)

A second-order accurate scheme has recently been developed by
Murakami and Read (15]. I
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di 2[g- d§P) (105)

CO K(de - dcn) (106)

dzD I jIjcp1 2 +k2(dep) 2 (17

d = dz/FD (108)

dzH= dz/ (kFH) (109)

Here, I denotes the deviatoric stress tensor, a is the hydrostatic stress
(pressure), 9P represents the plastic component of the deviatoric strain tensor 11,
while eP is the plastic component of the volumetric strain e. Moreover, G and K
are, respectively, the shear and bulk moduli, while k is a contant which
determines the magnitude of shear-volumetric coupling. The double bars
surrounding a symbol denote its Euclidean norm, while single bars denote
absolute value. Furthermore, FID and F are, respectively, shear and hydrostatic
hardening functions. In addition, z thoqs e intrinsic time scale, while zD and
ZH are, respectively, the intrinsic times for shear, dilatancy and hydrostatic
behavior. Finally, p(z), #(z) and r(z) are weakly singular kernel functions

satisfying the condition p(0) = #(0) = r(0) =,but integrable in the domain

Thewealysingular kernel fucton can be expressed in terms of Dirichlt
series:

p (Z) A Ae, ar (110)r=
r=1
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r(z) - riz (112)

where in order to satisfy the Clausius-Duhem Inequality, it is necessary that
r 0, Pi 10,. i1 0 W Ar k 0, Bi k o, ri k o. Moreover, to ensure that p(z), #(z)
and r(z) are sihgular at the origin and integrable over a finite domain, we must
have

-Ar - ri (113)
r=,-

and

Ar/r < ' Bi / Pi < y7i = (114)
I-1

4.2 INCREMENTAL FORM OF BASIC EQUATIONS.

In applications of the theory to date, it has been found that two or three
terms of the series (110) to (112) are usually quite adequate for representing the
kernel functions. In such cases, however, care must be taken to ensure that the

infinitely large values of p(O), #(0) and r(O) are approximated by suitably large
finite values. When this is done, we can write:

n e-2rZ

P (z) =• Ar r(115)
re1

#(z) Bie'Piz

1=1 4
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r(z) , ri e 1Z (116)

where n and m are finite.

It then follows that the expressions for g and e, as given by Eqs. (103) and
(104), can be aftemately written as

n Pr (117)
r=l

m m
Z = + i (118)

where Qi, P, and Ni satisfy the following ordinary differential equations:

C~ 4 ýAdgP r =1, 2,... ,n (119)
r +BQr Ar~

clP i deP
S+ Pi Pi = Bi i = 1,2,...,m (120)

i Ni = ri i =(121)

From Eqs. (117) to (121) we can write:
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di =A dI dQ% (122)

dr = adeP +r(I dgp) *(P +N)dz.H (123)1

A in Ar ru~F

n
o Qr N ) d 7 1 N (124)

m m
B- Bi p, 1

Equations (122) and (123) provide a simple approach for incrementally
integrating the stresses g and a, which is considerably more attractive from a
computational standpoint than numerically coping with the hereditary integrals in
Eqs. (103) and (104).

In that which follows, explicit numerical schemes are presented for
incrementally updating the endochronic equations given above when either the
strain incrments or the stress increments are given. Because of the explicit
nature of the scheme, it is necessary that the increments be taken sufficiently
small to ensure accuracy.

4.3 PRESCRIBED STRAIN INCREMENTS A£.

It is assumed that . a. 2,, 2,, N. and P. are known at the

beginning of each prescribed strain incrment, al. ýrom Eqs. (108), (109), (122)
and (123), we can write
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0

Au B £e * A P) - [E -H i a (126)

if we now combine these equations with the incremental Hooke's Law,
Eqs. (105) and (106), it follows that

A p . 1 2G y [a + PJ (127)I

1 M r [P +N r p 1~)
AC -g (Mae - I A)

(1284

Upon substituting these results into Eq. (107), the following quadratic expression
for Az is obtained:

a Az2 +bAz +c,, . (129)

where

a 1 +N kr(ge§) 12
(Aa 2)i-, (B +K) I tV- (A + (130)

(A + O
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(132)1

It can be verfied that the above expression for , b. and c reduce to those given
in Ref. 17 when dilatancy Is not present, i.e., N - r - 0. Equation (129)
provides two roots Az, ,. the one of Interest being the one for which Az 1O.
OncevAz is known, AtPdl &AP can be obtained from Eqs. (127) wn (128). after
which Al aind a# can be obtaine from Eqs. (125) and (126). Finaly. Eqs. (119)

to (121) arm used to update the Qr. NI ad P1•. This approach. therefore, permits
one to determine the stress increments, At. for prescribed increments In the
strain Ag.

4.4 PRESCRIBED STRESS INCREMENTS 4[.

In this case, j, a, I.I, P, e, P, , Ni and Pi a assumed to be known at the
beginning of each prescribed stress'increment AC. From Eqs. (109), (122) and
(123), we can obtain the expressions:

Agj As J+ 9 - a) (133)1

APm~A P 3sl + N)~z (134)

Upon substitting these results into Eq. (107), we obtain the following quadratic
expression for Az:

aAz2 +bhz + c-0 (135)

where
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a= I ' P+N kr(!•" 2 (2
(A FD) 2  I[-"-- PAN (136

A + 21 r P + ( (137)

- Al- + (138)

Again, the root of interest from Eq. (135) is that for which Az ý 0. Once Az is
found from Eq. (135), Al and AeP can be determined from (133) and (134), after
which A: and Ahe may be found from Eqs. (105) and (106). The Q, N and the P.
are updated on the basis of Eqs. (119) to (121). This approach, therefore,

permits one to determine the strain increments Al for prescribed increments in
the stress Ae.
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Section 5

NUMERICAL ANALYSIS OF SHEAR AT FIXED HYDROSTATIC PRESSURE

In order to provide a check on the accuracy of (1) the numerical scheme,I
(2) the computer program, and (3) the material functions and parameters that
had been determined for ISST. soil, we conducted a computer study of the four
test cases of shear at fixed hydrostatic pressure reported by WES in
Reference 4. The stress-drive version of the numerical scheme, described in
Section 4.4, was used for this purpose, since the corresponding laboratory tests
had been conducted under stress-controlled conditions. The general stress
path followed by these tests in the Rendulic plane is depicted in Figure 11, which
shows the four legs consisting of (1) pure hydrostatic loading up to some fixed
hydrostatic pressure coo (2) shear loading at fixed co, (3) shear unloading atI
fixed v0, and (4) pure hydrostatic unloading.
5.1 DESCRIPTION OF DIFFICULTY.

The numerical calculations proceeded smoothly and gave satisfactory
results for the first three legs. However, on the fourth leg, which involved pure
hydrostatic unloading, difficulties typically arose after the hydrostatic pressure
had been reduced from between 20 to 25 percent of its peak value go. To
elaborate on the difficulty in greater detail, let us first recall that, in the case of the
stress-driven numerical algorithm, the increment in the intrinsic time Az is
determined from the quadratic expression given by Eq. (135), i.e.,

a Az2 + bAz+ c=O0 (139)

where a, b and c are defined by Eqs. (136) to (138), but may be alternately
expressed in the following form:

a= 1 - - * (140)
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1

Shear at Fixed
Hydrostatic
Pressure ao

o ao

>~ Hydrostat

Figure 11 Description of stress path in Rendulic plane for WES tests of shear

at fixed hydrostatic pressure.
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b= 2t2 + kPAa*(141)
FH J

fAl Al B-J 2 (142.)

if we set

A*= Af - FH A') (143)

P*= P - r.- (, * (144)
FD

Inasmuch as Az is, by definition, unique and positive, an admissible solution of
Eq. (139) is obtained when the two roots, Az, and Az2 , are real, unequal and of
opposite sign. When this is the case, Az is defined by the positive root, and the
negative root is considered redundant. An admissible solution is therefore
obtained when the following inequalities are satisfied:

b2 - 4ac > 0 (145)
c/a < 0 (146)

Note from Eq. (142) that the parameter c is always negative, The parameter b
may be either positive or negative. Thus, if a < 0 then either real roots Az do not
exist, or they both have the same sign. Either of these two cases is inadmissible
and the computer program was designed to stop if this situation arose. The
parameter a must be positive if an admissible solution is to be obtained.
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For the cases of shear at constant hydrostatic pressure that we studied
numerically, the parameter a became negative in the early stages of the
hydrostatic unloading leg and, when this occurred, the computer program
stopped. To obtain an understanding of how this can occur, let us examine the
governing equation for Az on this leg. Note that for hydrostatic unloading under
zero shear, Al = 0 so that Aa* = Av. In this case, the solution of the quadratic
equation (139) yields the following result:

A[P* 11 11I
Az== - B-H- p, 2 _11 Q (147)

while the parameter a in Eq. (140) becomes

a= 1 11 r, 2 (*2 46)

If FD goes to zero as u tends to zero, as is the case with ISST soil if we disregard I
a very small cohesive strength, then it is possible for a to become negative, i.e.,

11Q 12 fP* 2< 19

or

1 1 Q 112 < * 2(150)1

Thus, in view nf Eq. (147), both roots of Az will have the same sign. I
Furthermore, since Av is negative during hydrostatic unloading, both roots will be
positive and therefore inadmissible since one does not know which of the two
positive roots is the correct one, i.e., there is a uniqueness problem.
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5.2 SOURCE OF DIFFICULTY.

In order to determine whether or not the difficulty is of numerical origin, we
took the following steps:

1. First, each of the problems was rerun with a variety of different size stress
increments, which varied by over an order of magnitude. As an extreme
case, we used 20,000 stress increments on the fourth leg alone.
Regardless of the size of the stress increment, the computer program
stopped (because of the condition a < 0) at virtually the same identical
value of the hydrostatic pressure on the unloading leg in each case. The
magnitude of the hydrostatic pressure at which this occurred was different,
however, for each of the four cases considered. Thus, the difficulty did not
appear to be due to increment size.

2. Secondly, we replaced the usual approach for obtaining the roots Az of the
quadratic equation (139) in the computer program by a more 3ccurate
approach. As most numericists are aware, if the usual expressions are
used to determine the roots of a quadratic, serious difficulties can arise. In
particular, if either a or c (or both) are small, then one of the roots will
involve the subtraction of b from a very nearly equal quantity (the
discriminant) and the root will be determined very inaccurately. The correct____ I
way to compute the roots is as follows. If we set

2 l~b +sgn(b)1b2.-4 ac] (151)

then the two roots are

S= a Az = (152)

This method of determining the roots Az1 and Az was introduced into the
computer program and had no perceptible effect on the result6. The
computer calculations continued to stop at the same locations on the
hydrostatic unloading legs.
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3. Next, the method of integrating the differential equations (119) to (121) for -
the Q,, Pi and N, was improved. Consider, for example, the differential
equation for r given by Eq. (119). A careful analysis shows that this
differential equa ion can be integrated over a finite increment Az to yield the
following expression for the imn., ament AQr:

Agr= a 'raZ ljKR rQ~ 13
~rAZD

where AZD - Az/FD. Similar expressions are obtained for AP; and Ni.!
Inasmuch as the term inside the first parentheses on the right side of this
equation has the potential for numerical difficulties when AzD is small, we
replaced this term with an accurate Pacle approximation-to avoid the m

difficulty. Again, the introduction of this improvement into the computer
program had no perceptible effect on the calculational results and the
calculations continued to stop at nearly the same location, as previously, I
on the hydrostatic unloading leg.

In view of the fact that none of the changes described above to the
numerical scheme had any significant effect in alleviating the problem of the
parameter a becoming negative on the hydrostatic unloading leg, it was I
concluded that the problem was not numerical in nature. Attention was then
turned to the model itself.

We initially speculated that the problem may arise from the Dirichlet series
representations for p(z ) and #(ZH) and, to explore this, we developed
approximate, but reason&ble, representations of p(ZD) and #(ZH) based on theuse of a single exponential in each case, which corresponds to one internal

variable. Using these representations for p(ZD) and 0(ZH), numerical studies of
the problems of shear at constant pressure were redone, but this time the
calculations proceeded to completion without difficulty over the entire four legs
of the stress path. These results would certainly indicate that the difficulty was
due to the Dirichlet series representations for p(z ) and #(z ). On further
reflection, however, it was concluded that this is no realistic. 8onsider that a
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Dirichlet series represents a solid of some kind and the only thermodynamic
constraint is that the series consist of positive decaying exponential terms. If we
accepted the above plausibility, one must conclude that some solids suffer from
this difficulty and some do not, a conclusion which is physically unrealistic.

We now believe that the problem lies in the physics of the representation of
the material behavior. For instance, in the developments to date, the parameters
Ar have been assumed constant and the hardening function F has been taken
to be a function of a only, although there is strong evidence thet It also depends
on eP, To elaborate, we note that various soils with different initial porosities
exhibit different responses to shear. Hence, 1?orosity must affect FD. However,
since porosity and plastic volumetric strain e are interrelated, plastic volumetric
strain must also affect F0 . It is very likely that the same will be true of the
parameters Ar. A study is needed to examine this dependence with a view
toward ensuring that the parameter *a" in Eq. (140) is nevar negative, whatever
the stress (or strain) path. This will ensure that the difficulty will not arise.
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CONCLUSIONS AND RECOMMENDATIONS

On the basis of the analysis described in tVe preceding sections of this

report, the following conclusions and recommendations are given:

1. A new endochronic plasticity model for soils, which can
describe both densification and diletancy, has been
successfully applied to laboratory data generated by WES forISST soils.

2. Appropriate theoretical methods have been developed from
which the material functions and parameters of the model can
be evaluated directly from two types of soil tests, namely,
(a) pure hydrostatic compression tests and (b) triaxial tests in
which the soil is sheared at fixed hydrostatic (not confining)
pressure.

3. An explicit, efficient numerical scheme was developed for
numerically integrating the system of equations which govern
the model. A corresponding computer program based on the
numerical scheme was also developed and applied to several
problems.

4. A difficulty with the governing equations arose when the
computer program was applied to the case of shear at
constant hydrostatic pressure. Specifically, on the final leg of
the stress path for this case, which involves pure hydrostatic
unloading, the computer program calculated inadmissible
increments in the intrinsic time increment Az.

5. A number of aspects of the numerical scheme were improved
but none appeared to have any significant effect on alleviating
the difficulty noted above. Decreasing the increment size by
over an order of magnitude also had no noticeable effect. In
view of this, it was concluded that the difficulty was not of
numerical origin.
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8. We believe that the difficulty lies in the physics of the

representation of the material behavior. It appears that the
mathematical representations adopted in the present model
for some of the material functions may not be general enough
to describe some of the observed behavior of soils. A study

is needed to explore this issue, with the goal of ensuring that
the difficulty noted above will not arise, whatever the stress or
stain path.

In closing, we emphasize that this study represents the first attempt to
apply the new endochronic plasticity model with dilatant capability to real soils
and, in the course of the study, considerable new insight into the characteristics
of the model was obtained. In view of the substantial promise shown by the
model in describing the complex features of real soil behavior, we strongly
recommend that a further study be undertaken to resolve the issue of the

representation of material functions discussed above.

II
i
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Appendix A

TRANSFORMATION FROM ENGINEERING
STRAIN TO NATURAL STRAIN j

The ISST soil data recently supplied by WES to S-CUBED for model
development are expressed in terms of engineering strains. Most of the
ImterIals models used in the defense community, however, are based upon the

natural (or logarithmic) definition of strain. In developing a constitutive model
from the WES data for eventual use in conjunction with one of the material
response coeds, the engineering strains given in the data must be transformed
to natural strains for consistency. The purpose of this appendix is to document
the equations for making this transformation.

AnahmkLy

Consider the small element of material, shown in Figure 1, which has sides
of length I-, 1.and 0~ In fth initial (unstrained) state.

La

Figure 1. Unstralned configuration of material element.

The element is strained in (principal) directions perpendicular to its surfaces so
that the lengths of theeides become L,, L2 and 1.3 . Under these conditions, the
engineering strains, e I, can be expressed as

ELi - i
I - Lo , (i = 1,2,3) 

(1)
Lpi

while the corresponding natural strains, eNi are given by
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- in (I - 1,2,3) (2)

The minus signs appear on the right-hand sides of Eqs. (1) and (2) so that the
strains will be positive in compression, which is the sign convention commonly I
a iosoldfm im ics.

Equation (1) can be solved for L to give

Li -L°-i(i= =1,2,3) (3)

which, when substituted into Eq. 2, leads to the expressionI

I

E n (1 I (I - 1,2,3) (4)

This equation, therefore, relates the engineeig strains to the natural strains.

Let us consider now the volumetric strain. The engineering definition of
volumetric strain is

VE -VV
vV 0

where V and v denote, respectively, the current and initial volumes of the

element shown in Figure 1. In terms of natural strain, the volumetric strain is
given by
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EN = IJV E(6)IV

In terms of the current and initial lengths of the sides of the small element, we I
can write

v LL2L3  (7)

Equation (3) may be used in Eq. (7) to give

0W

Combining this with Eqs. (5) and (6), we find

CE -E 1 (9)

and

9y (10)s1

By setting
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EE E E E1
~1 2 63

IMe = 1E2 E 23 +EE +IEE I
IIIE E E E
ME= C1c23 1 ,I

Equations (9) and (10) can be re-expressed in the forms:

e- =Il - Il•÷ + Ile (12)

EN= - an(, le + Ile - 11 le) (13)

For small strains, Eqs. (12) and (13) reduce to the usual expressions for the I
volumetric strain given by the infinitesimal theory, namely,

CE = eN=v , (14)

Summary.

Equation (4) Iovides the transformation from axial engineering strains E
to natural strains c., while Eq. (10) allows one to obtain the natural volumetric
strain e v from the axial engineering strains, e.
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Appendix B

COMPUTER PROGRAM FOR
ENDOCHRONIC SOIL MODEL,

REQUIRING THE STRAIN HISTORY
AS INPUT.
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c Index convention:

c I m ,...,numunl

Cc Onu 1,...,numlegI
parameter (max i =l0,max Ilu13,maxrulO
implicit double precision (a-h,o-tip 3 ddimension do3 , dep 3 ,dop 3 ad(

03 " op 3 op k3 epsoý 3jS

q3 , a 3 sig

b (mmxi ,biggam mxi beta(maxi) bign(maxi)
p1 (maxi , smiga. maxi
0. a msxr , alpha maxr ,qr(3,maxr)

n log kmmxl , eps Ieg ,mal 1)
character*BO ndf i e,nofil 3Ia x

read 210, nof ile
read 210, ndf ile
read *1 capkz,capkl,const,pr ,taus'CO ,Sigt
read *,numr ,(aQj),alpha Cj), j=l,numr)
read .,numi ,(b(i) ,beta (i),biggam(i),smlgam(i),i=l,numi)I

C read *,numleg,nleg(1),(epsleg(k,2),k=1,3)

print 220, akzz am. amuz ,both,bets,betk
print 230, capkz,capkl~const,pr- taus,cO ,sigt
print 240, (j,a (j) ,j,aiphs Qi ,j=l,numr)
print 250, (i~big (.i),i, beta (i ,iul,numi)
print 260, (i bigm i)j,i=agam(i) ij=1,numi)
print 270, (1,nIeg(1.),(epsleg(k,1.e1),km1,3),1:1,1)
open (unitull,f i einndfi Ie,form='formatted)
open (unit.12,f ilemnofi i.,form.'formmtted)
read (11,*
read (11,.
read (1,*)
read (11,)
read (11,*)
read (1l,*)
read (11,.)
read (11,*)
read (11,*)

write (12,310)

capasO.
do 10 j=1,numr

capb=0.
gamOnO.
do 20 irn1,numi
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20 qmmaObrmi

nal

do 120 nlal~numlog

op. Idloopnowl
op. I d2mopnew2
eop.Id3sopnew3
road (11,*) .pnewleopnew2,opnow3
opnowla-epnowl
epnew2.-epnow2
opnow3u-epnow3

do 110 nnal,nlog(1)

nstepsun
n *n.1

.pso(1) mops 2
:pso SOS
eps (1) meop.di. (pnewl-epoldl float Cnn J/float(nlog(1))
epa 2 meop. d2. (.pnew2-epold2 float (nn) /float Mneg (1)
epa (3) mpold3. (opnow3-opold3i float Cnn)) Ifloat (nlogR()

do 40 kml,3
deps (k) mops (k) -epa.(k)

40 dovudov~dsps(k)I
ev mov *dev
do 60 kml,3
q(k)=.0
do 50 jul1numr
50q (kq (k).atpha(j)*qr(kj)

k (moups (k)-oev/3.
60 de~k) .deps(k)-dev/3.

p Z.0
fn=0O.
do 70 im1,numi
fn=fn~suntgam(i)*ibign(i)

70 p .p~beta(i)*pi (i)

qd. =0.
qq .0.
qs =0.
sdle =0.
dede=O.
do 80 k=1,3
qdo =qde +q (k) :do (I)
qq mqq *q (k) q (k)
qa zqs .s (k) *q (k)
ad. mde +a (k) *do (It

80 dede=dede~de k)*de (k)
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ski uinkzz~dexp (-b~tk*evp)
copkacapkz~capkl*pp
svmu2.amuzconatedaqrt (gamz)

r Ip- cOsevp)
s *bapp) / (tosuabeta'.pr)

f th .txmpu eb.vp I
abs racaps auu2
bberucapb~capk
=amai .-qq/(&bmraf a) .. 2

- -(1./bbsr**2) *((pe n) /th-akzsgasmqs/ (abarefa)) *'2
mbin-2 (amu2*qde/ (abar**2*f a) *(akz/bbar) *.2

(csp~de-s*smu2/sbar*sde*) *((p~fn) / (kz~fh)
* -gam*qs/(abar*fa)))

smlnc.-((amu2/abar) *.2*dod~e (skz/bbar) .. 2.(capkuedev
- amu2*gameade/abar) .*2)

arg .amlb.*2-4.'eamlasamic
dzl =-(.51/smla).(amlb~dsign(1.dO,smlb)*dxqrt(max(0.,arg)))

dz2 .smlc/(mlswadzl)
if (arg.It.0..or.dzledz2.gb.0.) then

end if
dz zmax(dzl~dz2)
dzsudz/f a
dzhmdz/ (akz*fh)

c
devp=(1 /bbar) *(capkedev-amu2*gam

/sbar~sde. ((pef n)/I(skzeth) -gam~qs/ (abar~f s)) sdz)
evp nevp~devp
dwp .0.
do 90 kul,S
deop (k) * (mu2*de (k).q (k) .dz/f a)/abs r
ep (k) uep (k) .dep (k)
da (k) icapa*dep (k) -q (k) *dz/f a
a (k) .as(k) *da(k)
dwp indwp~s (k) .dep(k)
do 90 jzl1numr
emnaledxp (-alIpha (j)*udz%)
.ms2=dxpldx ( alpha8() *dzs)
ems umsl*una2

90 qr(k,j)=qr(k,j).ems*(a(j)*dep(k)-slpha(j)*qr(k,j)*dzs)
pp=pp~capb*devp~gam*dwp- ((p~fn)/I(akz~fh)) *dz
do 925 k=1,3

925 asig (k) =s(k) +pp

100 10 pi i).:ii) mh*bi ueepbti):i:hgoo13
bign(i)=bign i .gsmO*exp(-cOemevp) *dwp

amhudexp -bets(i)*dzh)odxpldx~betakz*fh dzh)
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write (12,320) n, (.ps(k) ,kal,3), (sig(k) ,k.1 .3)

110 continue
C

120 continue
C

130 call exit

220 torusia I akzz ualp.13.S, I M Um81p*13.6,
* awlz =00pelS.6,/a

'beth =':1pe13.6, beta U),lIpel3.6,

230forat( betk a',1pe13.S)
20frt( capkz =I'lpelS.6, I capkl *'1Ipe13.6,

const .',lpelS.60/8
0 'CO UljpelS.61 sigt =891pe13.6)

240 format I,( al'i,') *,lipel3.6,'1 alpha~I1,1 =881pe13.6))
250 format I,( bojil, =b,lpe13.S,' beta'li1's u'.1pe13.6))I
260 formati (' biqggm'j,il,'',lpel3.6,' sulgamj1,il'= pel3.6))
270 format /,(1 e'i,"'i, points, sigleg nI'1p,3e14.6))
280 format 'nateps 85iJS)

290 format 'nl,nsteps,arg,dzl~dz2l2i6,1p3e15S.7)
310 format Istrain drive endochronic model results',/,

1.1 e2 *3

sigi sig2 sigS )
320 format(i5,3f10.6,3f10.4)

end
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